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AERONAUTICS

THEORETICAL AERODYNAMIC CHARACTERISTICS OF A

OF SLENDER WING-TAIL-BODY COMBINATIONS

By Harvard Lomax and Paul.F. Byrd

SUMMARY

FAMILY

The aerodynamic characteristics of an airplane configuration
composed of a swept-back wing and a triangular tail mounted on a
cylindrical body are presented. For simplicity, the leading edge of
the wing is considered to be straight sad the trailing edge to be
shaped so that the span-loading curve is flat between the fuselage and
the wing-tip regions; the result is a nearly constant-chord swept-back
wing. A method by which other trailing-edge shapes can be studied is
indicated. The analysis is based on the assumption that the free-stresm
Mach number is nesr unity or that the configuration is slender. The
calculations for the tail are made on the assumption that the vortex
system trailing back from the wing is either a sheet lying entirely in
the plane of the flat tail surface or has completely “rolled up” into
two point vortices that lie either in, above,or below the plane of the
tail surface.

INTRODUCTION

The studyof lifting surfaces flying at either subsonic or super-
sonic speeds at small angles of attack has been reduced, by the wel2-
lmown p~ocess of lineari~ation, to the study of the

where 9 is a perturbation velocity potential in a
uniform free-stream velocity V. directed parallel

equition

(1)

field hatig a
to the x axis,

and where ~ is the Mach numb& of the free stream.

One basic simplification of equation (1) is brought about by
neglecting velocity gradients along the span of the wing. If the wing

. ——.—.——. . -.—_______ ~—. ____ . _ ...- —_____ —— _____ .. .. . ________ .
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is lylng in the z = O, plane, this amounts to neglecting the term Qn
in equation (1), and results in the well-known partial differenti,d
equation by means of which two-dimensional or section characteristics
are studied.

Another basic simplification of equation (1) csm be atta~ed by
neglecting the term (1-M02) pa. Such a procedure is possible when the
Mach number is close to 1 or the wing plan form is so slender that
velocity gradients in the free-stream direction are negligible in com-
parison with the gradients in the y and z directions. Equation (1)
has already been snalyzed in these two connections in references 1 and 2
for certain plan fomns. The purpose of this report is to extend this
theory, which has been nsmed slender wing theory, to include an entire
airplme configuration.

Results are presented for a nearly constant-chord, swept-back wing
mounted on a cylindrical body having a triangular horizontal tail located
tit of the wing trailing edge. Both wing and tail are flat surfaces,
and the results are only those due to changes in the airplane angle of
attack.

A list of important symbols

I-SWEPT-BACK WING

.

is given in appendix A.

ONA BODY OF REVOLUTION

Psz%ial Differential Equation, Boundary
Conditions, and Form of the Solution

Under the assumption that the free-stream Mach number
the perturbation velocity gradient in the x direction is

is 1 or that
smaU, the

partial differential equation which must be satisfied for the so~ution
of lifting surface problems can be written

~yy+qzz=o. . (2)

Equation (2) is simply Laplace~s equation in two dimensions, the
variables representing lateral and vertical coordinates in a plane
transverse to the direction of motion.

The boundary conditions,associated with equation (2) sre given
along a line in this transverse plane and specify that the fluid veloc-
ity is everywhere tangential to the surface of the body. The problem is,
of course, to find at other points in the plane the potential that
satisfies equation (2) and fits these boundary conditions. of paticular
interest is the streamwise component of velocity slong the surface of
the wing and body since this is directly related to the loading thereon..

. .—. . —.— -— –—— -—..—— ___ ____ — —
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Solutions to equation (2) are readily available. Two different
smalytic forms of these solutions will be used in the following analysis.
One form is concerned with the use of the complex variable, the other
with the use of Greenfs theorem and the inversion of a real, singular,
integral equation. In general the procedure till be to use concepts
associated with the complex variable to map the boundary conditions onto
a slit along the real axis, then to solve the resulting problem by
inverting an integral equation, and fin@ly, to use the co~lex variable
again to extend such a solution out into space by the principle of ana-
lytic continuation.

Discussion of notation and transformations.-The first part of this
report will be devoted to the analysis of the configuration shown in
sketch (a). The.following is a description of
this co~iguration. Eve&here behind-the
leading-edge-fuselagejuncture the fuselage
is a circulsr cylinder having a radius ro.
Ahead of this juncture the fuselage comes to
a point, the manner being arbitrary. The
wing is a fiat @ate without twist or caniber
mounted at zero incidence on the fuselage
and the whole configuration is placed at a “
small angle of attack a with respect to
the free-stream direction. The origin of
the coordinate system is located at the
wing apex. The leading edge is a straight
line with slope, dy/dx, eqyal to m. It
will be convenient at some places in the
report, however, to use the expression

Y= s(x) for the equation of the leading
edge, hence, s(x) and mx are used inter-
changeably. The trailing edge is repre-
sented by the line y = t(x) and is, in
fzeneral,-notstraWhi.l me ~ semispan of the wing is denoted
<y so.- The syniboi to, as cambe seen in the sketch, refers to the
lateral distance from the x axis to the point at which the trailing
edge intersects a line that is yarallel to the y axis and passes
throwh the last outbosrd point of the leading edge. Finally, co is
the &ordwise dis~ce fro; thp origin to the-
juncture.

trailing-edge-fuselage

lIt ma considered ad~s’able at t~s the to consider only the rather

particular configuration outlined. As the analysis progresses it
will be pointed out where the solution can be generalized to include,
fer eqle, wings with twist and caniber.

●

✎ ✍✎ ✍� ✎ �� � ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎



4 NACA TN

A second coordinate system will also be used in the succeeding
development. Let the y,z plane be represented by the complex
variable ~,

then introduce

so that the g
transformation

~=y+iz=

the El plane,

~l=fi+iz~

plane maps onto the El

peie

= pleiel

2554

plane by means of the Joukowski

(3)

BY means of such a transformation, the circle of radius rn which
represents a section of the fusel&ge in the ~ plane maps-onto a portion
of the real axis in the, ~1 plane (see sketch (b));

and the part of the real axis which

(plane j=
lies outside the circle2 in the E

t-

plane maps into the remaining part
of the real axis in the ~1 Plane.

I J
+1-1 1-

r. cos e = yl/2y-rl<yl<rl

vs.-l Y1- A/x==
Y= J

2

.

%’he Joukowski transformation is double valued in that the regions
inside and outside the circle p = r. both map onto the entfie ~1
plane. In this report only the field outside the circle is of interest. .,

— ..- —— .—— . —
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and

5

I

(5)

2
r.

y~=y+—
Y’

YI = 2ro Cos e, y12~r12
J

Further,

2
r.

2
S1 =s+ -7’ “

=t+r~,r~ = ao (6)

From the basic theory underl@ng the use of complex variables in fluid-
flow theory, induced velocities in the two planes are relatedby the
expression

v-iw = (V1-iwl)

from which, since in polar coordinates

dE1

si-

3=[‘- @’)2cos2“1+ i (32‘in2’

it follows that

TT=w, [1 - ~:y COB q -..(;J
Vr =

[

.1 cos e+wl sti e

~ 1[1-(31
sin 2e

I

(7)

(8)

) (9)

Lastly, Laplacets equation must also be satisfied in the El plane,
hence

(lo)

. . . . -—. —..-————- .--- —-. ..-. -—— —— —- —.——--------- ... —- ..—.-. -.
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..
Boundsry conditions.- In this part of the report (part I), the

effect of a cylindricalbody mounted on a nearly constant-chord swept-
back wing willbe studied. (Reference 3 contains an analysis of the
effect of a cylindricalbody mounted on a triangular wing, and reference 4
presents results for a swept-back wing with no body; both references
use the assumptions of slender-wing theory.) The boundary conditions
willbe pres=ted in the y,z spa;e first and can be written

(i) v~ = o, P = ro, 0~e~2fi
1

(ii) w = o, z = o,

(iii) v = o, w = Voa, p ==,

Equations (n) represent the conditions for a

t2 <y2<s2

o~e<2fi
/

cylinder located

(II)

at
P = r. and two wing panels located between H and *S on the real
tis, both cylinder andwings%eing at rest in a free’stream which is
moving with velocity w = Vo~ at infinity.

It follows from equations (9) that these boundary conditions
become, in the El plane,

(i) w~ = o, 0<y12 < r12

(ii) WI = o, t12 < y=2 <812

‘1

(12) ‘

(iii) Vl= o, W= svo~, Pz=m, o<e~2fi ‘

Equations (12) represent the boundary conditions for three ’wingpanels
along the real tis, alllat rest with respect to the free strem moving
with velocity w= = Voa at infinity in the transformed plane.

It is more convenient to work with boundsry conditions which vanish
at infinity,~owever, so the final form of the conditions which must be
satisfied is derived from equqtions (12) by subtracting the free-stream
velocity Voa. There results

(i) w= = - Voa, 0< y=2< r12

(ii) WI = - Voa, t12< y=2< S12

(iii) Vl SWl = o, Pl ==, o<e<2fi
I

(13)

.

i

“

General solution.- The general solution to equation (10) which
gives the vertical induced velocity wl at a point in the 31 plane
due to the jump in the value of the induced velocity VI across the yl
sxis can be written (see, e.g., reference 5)

.

—— —.-__—-—_—
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‘~ (Y1-Y.&wI(YZ)
W1(Y1)Z1) = - &

J’
dY2

(YI-Y2)2+2=2
-s1

7

(14)

where y2 is the variable of inte~ation. Set zl equal to zero and
there results th6 value of the vertical induced velocity on the y=
axis. Thus

J’‘14Y2) ~2
W1(Y1) = wl(Y@) = - ;fi’ —

Y1-Y.2
-s1

(15)

Equation (15) is the form of the solution which will.be used to
@ze the problem previously outlined. It is apparent by reference to
the boundary conditions listed as equations (13) that in equation (15)
the value of W1 is the lmown quantity and Avl is the unlmown. Hence,.
equation (15) is an integral equation which must be inverted in order ●

that the solution can be written. Such an inversion is not difficult if
the value’of WI i’sknown everywhere in the interval -Sl<y=<Sl. b ~
the present case, however, there is a subinterval rX2<yl=<~2 in
which WI is not specified, and further, in which Avl is not neces-
sarily zero (due to the presence of a trailing vortex sheet). It will
be shown in the subsequent development that the assumption that Avl
is zero in this interval (i.e., no vortices sre shed by the wing ahead
of the interval)‘yieldsa nearly constant-chord, siept-back wing; with
such a restriction the inversion can again be perfomned.

Given the inversion of equation (15), it is possible to write both.
WI and V1 for certain portions of the real tis. All along this sxis
the functions WZ and VI are, of course, real. Hence, if

f(~l) = vJY@J-iq(Y@J (162)

then by analytic continuation

f(g~) = V(EI,O)AT’’(E1?O) (16b)

Therefore, the inversion of equation (15), together with equation (16),
gives sufficient information to determine the induced velocities through-
out space.

1-

.,

. ... —..- . . . .. . —..—— - —- —————— -—————— .——-----L -.——— ___ ._ ....—.. .. ...—.



.———-— — . .

8 NACA TN 2554

Particular solution for the nearly constant-chordwing.- Adopt the
notation Av=b equals Avl in the region of the Y1 axis representi~
the body or fuselage in the El pl~e; A~la equals the value of AV1
in the region of the yl @s represent- the space between the fuse-
lage and the wing; and Avlw equals the value of Avl in the region of
the ‘yl axis representing the wing plan form. Then if Avla = O (the
calculation of the trailing-edge shape corresponding to such a choice
wi13 be presented later), equation (15) becomes

(17)

Since the airplane is laterally symmetrical, the span loatig is sym-
metrical and Aql(yl) =Aql(-yl). Therefore, API has the property
AV1(Y1) = -AvI(-Y1). By means of this relation for Avl and the addi-
tional change in notation

equation (17) can be written
s

‘1
W=(ll=)= - &-

f0
Eqyation (19) wi~ now

wl=- V@ for 0<~l<r12

J-h= Y12

72 ‘ Y22
1

(18)

(19)

be inverted under the condition that
and for tl2<q1<s12, and under the addi-

tional condition that (AvIW) - (A~la)q2=t12 = O, which amounts to
~2=t12 -

assuming the Kutta condition along the wing trai”lingedge (seey e.g.,
reference 4). This inversion is accomplished by a double application
of the following solution (see appendix B): If

b A~1(n2)d?2
f(ql) = - &

f vl-n2a

then, under the condition that Avl(a) = O

(20a)

(20b)

.

.

.—z —— .- .- —— . ~..
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Now write equation (19)in the form

9

and then, since Avl~(0) = O by reasons of symmetry, apply
eqyation (20b). For o<~l<r 12, there results the expression

Substitute equation (2) back into equation (19),
integration and, for t12< ql< s12, there results

(21)

reverse the order of

“0”=-&J$%r’2g- (22)

tla

where

?

ain
~ l’lJ

1q2-r12

g(72) = AVIW(1’12) ~
2

apply equation (20b), this time to eqyation
can be shown to satisfy the relation

(23)

(22). In this way

(24)

and equating this expression to equation (23) gives

‘v.w’-moaG,> ‘12<’1<s12

(25a)

.. . . . . . ..—. ..— .. ---- ---- -.—.— --, ..- ——————---- . ..— —.-- —- .-. .----- —-——— .. .. .. --- -.— —
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A repetition of the above process Yieldss

The results given by equations
in space by anslytic continuation.
procedure. Hence, since (Vl)zla =

VJY1>ZI

!.(25b)

(25) can be extended to,other points
Equations (16) indicate the necessary
Avl/2,

‘ [i+ j= ] (26)-iwJYl,zJ = Vc)a

‘When the method is applied to a value of wl which has some given
vsriation with q= there results

.

and

b
2rl

o

s.2

V2(%2+-12)

tl=’<ql<sla

+

+ {

—.—... ..—.—— —— —.
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Equation (26) has’seversl branch points so it is’not uniquely defined
without specifying the cut from -~ to S1 along the real axis in
the &l plane (see sketch (c)).
In the upper half of the 31 plane J,fz,
191varies between O and fi and
in the lower half, between O r“

(
and -x. Notice that when 51 is
at a very lsrge distance from the
origin in any direction the mag-
nitude of the term on the right-
hand side of equation (26) tends ~
to zero, so that the boundary “

——.-.—------------- —____ -

[

--------—---- --.--z
-s,

conditions at infinity -e satis- SI
Gut In ~ planefied. It is evident that the

other boundsry conditions in (c)
equations (13) are also satisfied. “

The Trailing Edge

Special trailing-edge shape.- Equation (26) is a solution to
Laplace’s eqyation and represents the flow around a wing and body.
However, the plan form of the wing has not as yet been evaluated,
although it has been fixed as that which makes the value of Avl vanish
in the region between the ~ and the body. Since Avl is the
~adient of Aql in the yl direction, and further, since (AQ1)TOE

.
(the value of API at the wing trailing edge) equals the totsl circu-
lation rl about a given chordwise section, this amounts to the same
thing as assuming that there are no trailing vorticies between the wing
and the body. It is a further consequence of such an assumption that
the span loading ahead of this region is a constant for r.2<yo2<to2e

The configuration which will produce such a flow must nowbe determined.
In particular, if the leading edge is taken to be a straight line, the
equation for the trailing edge is unique ad needs to be expressed.

One of the simplest ways of finding the shape of the trailtig edge
iS to find ~CEO from equation (26) and solve for t as a function

.

1.

.- 1.- . . . - —. ---- .- ._ ——. .- —- . -- — --- -— _ _ . ___ _ . . . __ _— . ._ _. . . . _ .
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fixed value of r. and ~.Ec. !!?heCOIM3tantrepl?eSent-
is the value of the jump in potential at the point P in
Here Aq is lmown

, –.
[see, e.g., reference 3) since there is
no gap to make its solution indeter-
minate.

Consider an-arbitrary section, as
M in sketch (d), downstream of the
point P. The value of Avlw at such
a section is givenby equation (2%)
and the solution for L@lw fo120ws by
definition and is

(27)

Equation (27) is an elliptic integral
which can be easily reduced by means of
the substitutions

s~z-tl’
k12 =

s12-r12Ykl’2=-
(28)

and.by using the Jacobian elliptic functions”defined,in this case, by

(s12-t12)sn2u = s=2-y=2, cn~ = l-sn’u, dn~ = l-k12sn~

to the form

snd where the incomplete elliptic integrals E and F are
the list of symbols (appendix A). Equation (2g) reduces to
given in references 3 and 4 when there is no gap or no body

(29)

(30)

defined in
the results
respectively.

.

—— .— —-— — —.—. — .—- ..= — —-
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At the trailing edge yl = tl, and eqmtion (a) becomes

(31)

‘where the elliptic integrsls are now complete. Transform this to the
physical plane, using equation (6), and set

then there results

(32)

(33a)

At the juncture of the fuselage and the wing trailing edge (the point P
in sketch (d)), s equals mco and t equals ro, so that

equation (33a) reduces to

(4)T.E. = ~mCO
[’- (S 1 (33b)

As was pointed out, the solution for the equation of the trailing edge
canbe obtainedby equating these two values of (A9)TCE.. Hence

‘co[’-(as1= - (Eo-~’2d
or

t 2-mcot

Set

[’-(SV’1--ro2=0
Eo-~’~

~ [’-kh’=mco
Eo-~’2&

(34)”

---- --- .- —...... .— - -.. -—— - .. - —_ ..-—.-—— - — ..—.—— -- . -- . .-—
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and since s equals mx

. /’ t2-r.2 \ ~

From equation (34) the solution that gives the
shape can be written

t_G+m

2

and from the definition of ~T

correct

NACA TN2554

trailing-edge

(35)

‘ t2-ro2 + J( t2-ro2)2+4~’2t2r02
mx=

2ko’t

(36)

If &’ and ro/mco are fixed, t/mco is determined from equation (35);

/and a fixed ~?, r. mco and t/mco determines x/c. from
equation (36). Hence, it is relatively easy to
the shape of the trailing edge.

Sketch (e) shows the shape and position of
the wing leading edge is swept back 45° and the
is 31.6 percent of the extended root chord, co.

calculate numerically

the trailing edge when
radius of the fuselage
(A dimensionless

/. o

/.5

x

To

2.0

coordinate system is chosen,

Y@* ,0
however, so that the results

.5 can be used for various values.
I of m. and co.) shown also,

for comparative purposes, is
the position of the trailing
edge when there is no fuselage -
the condition in both cases
being, of course, that no
vortices trail back in the

Troiltng edges
region directly behind the wing.
Table 1 presents coordinates of

~ /m co
the trailing edge”for several
values of ro/mco.

o
.3/6 -

I

.
— - -.—— .— —-— ——.. . . . .. .. .. . ..... —
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Sketch (f) indicates the
variation of the local chord
along the span for ro/mco -
equal to 0.6, 0.Q6, and O.
It is apparent that the
effect of the body isto make
the trailing edge more nearly
that of a constant-chordwfng.
The asymptotic value of the
wing chord is given by the
equation .

where

Mm’
cm = ()x-;

x+ m

15

/.0

~

co

.5.
..

‘ y/mco 2

More complete results are
given in table 2.

just ~resented canbe
shapes corresponding to

Other trailing-edge shapes.-
genera.lizedand used to calculate

The procedure
trailing-edge

arbitrary span-loading curves. Suppose that the span loading in the
transformed (or ~=) plane is representedby a power series in yl in
the interval rl=~y12~t12. Then the circulation in this interval can
be written ,

and, hence> Avla> the value of AV1 in the same interyal, becomes
.

m

Avl,a= Y
nbfiln-l

L-1
n=b

Eqgation (19)now takes the form

.. ..— —— . . . .—.——-. . . .. . ——— __.._. _ _ .— —._ .-—. —.. —--— —---- . ..— -
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The left-hand side of the latter equation varies with VI in a given
manner depending on the bn’s in the expression for r. Hence, the
equation can be considered as identical to equation (19), the left side
being regarded as an effective w= in equation (19). The analysis
succeeding equation (19) can now be repeated in terms of the equivalent
WL. There results an equation for the trailing edge which depends on
the bn’s,

1.

By the process outlined, both the trailing-edge shape and the span-
loatig curve have been expressed in terms of m + 1 constants. By
varying the number and magnitude of these constants, a large class of
trailing-edge shapes canbe obtained.

The Wing Area

Hating found the shape of the trailing edge by the methods outlined
in the preceding section, it is now possible to determine the srea of
the wing. Denote this srea, region 1 in sketch (g), as S1 and the area
of region 2, shown also in the sketch, as S2. It is evident that the
sum of these two areas is shply

1“(g) x

m

()

2
ro

5 ‘-r

Replace S2 by its integral
equivalent and there results

() r. 2
s+ x-; -

—.— ———— —- —.—-__— —.
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If a dimensionless system hased on the length Co is adopted, one can
write for the total area (i.e., both panels, see the shaded area in
sketch (hi)) of the wing the equation

where t/mco is given numerically as a function of x/c. in table 1
(y/rnco in the table representing t/mco). Numerical relations between
the parameters S/mco2j ro/mco, so/mco, and to/so are presented in
figure 1.

The area of a wing with another
kind of tip shape can be readily
evaluated once the particular tip
shape is specified. For example> the
area of the wing shown in sketch (h2)
can be calculated by mibtracting a
rectamgul~ area (given by the sum of
the two triangular regions labeled 3
in sketch (h2)) from the area of a
sketch (hi).

Downwash Behind Wing

The equation for the downwash
behind the wing and in the z = O
plane ~ollows immediately from
equation (26). In the transformed
~1 plane the value of wl is

prl = - Voaj O < y~2< r12;t12< Y12<s12

(/) I

#

and

, w.=-voa[-m]Jr.2<
(3@)

. . __ .. —-.. ,------- .—. ——-— .—-. --- -—----—.— --- -----------—.—
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In order to transfomn this value to the physical plane, cexe must be
taken to go backwards through the boundary conditions in the proper
order. Equations (38) represent the solution for the boundary conditions
presented in equation (13). To find the solution for the conditions
given by eqyation (M) a free stream V& must be added. ~US~ ~
mathematical notationj

where the subscripts 12 and 13 refer to the boundsry conditions satis-
fied. Finally, to find the d.ownwashin the physical plane, the transfor-
mations given as equations
stream subtracted so that

(9) ad (5) must ~e-employ~d and the free

[ 1 y+o’ _ v ~ ~

W(y) = (WJ13 + Voa o
Y2

where (w=)~~ now becomes ‘

(Wl)~~ = - V~, 0< ~< r=;t2< ?< S*

and

(WJ13=-V. [1,~(’-)jm],,<.-2
Combining and simpli~, one finds

w(y) = - V&jO< y2< r2;t2< y2< S*

and

(39a)

w(y) = - .v& Pi%)~=],...<t.
(39b)

.

. . . . ..—.— .— —. —— . —. --
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The accompanying sketch shows the variation of -w/V@ in the
intervals for which it has been given. If no wing is attached to the

1.0 6
--i

AA BB cc -

-w
~

-: y)

I “ /~.
-@i /“’ /// /

---- /“

.5-----–- ---4- ---””~”
With body —

-— - —— -- - - Without body -----
[

.6 I.g y/me*
0 4-

-.5-
1

- /.O-
1

body (or if the gap is very lsrge) the fluid at the side of the body is
moving upward at a speed equal to ttit at which the body is moving duwn-
ward. The presence of the wing restricts this motion and as the wing
panel approaches the body the air in the gap is forced more and more to
move downward with the wing and body. The dotted lines in the sketch
show the variation of -w/V& if no body is present, that is, if r.
equals zero.

Chordwise Load Distribution

Loading on the wing.- The loading on the wing can be calculated
by means of the linearized equation for the loading coefficient. This
equation can be written

()AP 2AU 2 w..=—= ——
Tw Vo Vo &f

.
(4oa)

—.. . –—.-—-— . .. . ...._ .. -—.. . .. _.. _ . ..... . . ______ ._ --z___.~~ .~_,. ..=
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It is somewhat easier to calculate the lo-g if the derivative of
Avw

is taken in the 51 plue. If A~lV is considered to be a function

of the two independent variables y=
ad SIJ equation

modified slightly to read

()

AP 2 all!?lvas~ ~
— =—— ——

~~ Vo as~ ti &

(M)a) can be

(kOb)

Wlw
The value of —asl

cam be obtained by differentiat~

thus

eqmtion (29)}

.

aATlw

[[
—=2VOCL —J+ 1E(k=,$l)-kl~F(klY~l) +

aal 2-rl2

aE(kl,~l) _ kl,.2aF(klyVl)
-[

dk=’

s~z-r12 — —— 2kl’F(kl,*l) —
asl asl dslII .

which becomes
.

(41) ,

The terms dkl/ds= and a~l/&l both involve dtl/dsl which is

proportions.1-to the slope of the trailing edge in the transformed ~1
plane. This latter derivative can be readily obtained from equation (41)
itself since the value of (AP/q)w ~d hen~~W~~$sludW~~ be ‘ero
on the trailing edge, that is, where Y1

eq@s 1.

This yields the relation

dtl slEl
—=— (42)

,as~ tlKl

.
_ . ..— —— .—. —.—— —---_——
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by means of which the identities

and (43)

&l
kl—=

-(E’-’:K7 Jdsl s12-r12

cm be written. Place equations (41) and (43) into equation (40b), and
there results for the loading

1 Ap

-()

‘14—
El.— =

J—- [
E(kU$l)- —F(k=,V1) +

m qa ~ s.2-r.2 K1

Transforming this to the
dsl/ds =(a2-ro2)/s2

5 plane, one finds, finslly, since

1 ()Ap
2s2+ro

4—

“1

E.-—=
S* E(~,~o) - ‘F(ko,~o) +

m W w .’0

s2(F-ro2) 1(y2-t2)(y2t2-ro4)

yt(s2-ro2) (s2-#) (.2~-ro4)

where ~ is defined by equation (33) and .

(44)

(45)

In the special cases when there is.no body or when the ~ is
triangular, equation (44) agees with the results presented in
references (4) and (3), respectively. A discussion of the chordwise
load distribution over the ting will be given at the end of this section.

)

. . . . . . . . .--— .——. - -- —.--—-
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Loading on the body.- The vsriation of the load distribution over
the body can be calculated in much the same way as that over the wing.
It is first necessary, therefore, to find the jump in potential between
points directly opposed above and below the z = O plane. In the ~1
pl=e this difference follows immediately from equation (25b) just as
equation (27) wm writtenfor Apm. Hence,

The
and

+j’=”’ (46)

‘1
first of the integrals in equation (46) has already been evaluated
the second can be reduced by means of the transformation

(t=2-y22) sn% = r12-y~2

After some manipulation, equation (46) becomes

Awb = 2VOCC
[
E1-E(kl,~~)+kl’2F(k1,~~)-kl’2K1]=+

where kl is defined by equation (28) and

rr12-y12
v-~= —

t12-y12

(47)

(48)

Using the equ&ions (42) and (47), one can write for the loading on the
body (after differentiation and simplificationof equation (47))

-—-—. —-.———— -—-.—— —-
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.

%2( s2-ro2)t I (49)
[(&+r02)2-4y%2] [(#+r02)2-4##]

where &j is defined by equation (33) and

*. ’f?-t

Again equation (49) ~ees with
previously lmown results in the
limiting cases when the body
vanishes or when the wing
becomes triangular.

Discussion of the chord.
wise loading.- Equations (44f
and (~9) form the basic results
of p&rt”I of this report.
Graphs of the loading coeffi-
cient for a wing alone and for
a wing-body combination (ro/mco
equals 0.~6) are shown in
sketch (jl). The results for
the case of zero body radius
could have been obtained
directly from reference 4.
They are sho& here for the
purpose of a qualitative com-
parison. Unfortunately, the
load distributions on the two
wings cannot be compared quan-
tatively on the basis of equiv-
alent plan forms since the
trailing-edge shapes differ
significantly. The variation

(x)

10-,
\

1 1

t .Tm-dtm#nsbmi

~m

\

SeCNM AA Y> :,,
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‘t
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—
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.
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,
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.

of the loading sd.ongthe center line of the body is shown in sketch (j2).

4

AP
qocm

2

0
0 .8 /.2

x/c*

.

/.6 2.0

On the basis of the load distributions presented in references 3
and 4, the qualitative variation of loading shown in sketch (jl) is
obvious● That is, the loading falls steadily from its infinite peak at
the leading edge to zero at the trailing edge. On sections which are
cut by the Mach wave from the trailing-edge fuselage juncture, the slope
of the curve is discontinuous.

The change in the load distribution brought about by the presence
of a wing tip is the same for a wing-body combination as for a wing
alone. The behavior of the loading in the vicinity of a tip has a
straightfo~d explanation in terms of the trailing vortex sheet.
Thus, if the wing is cut off along a line perpendicular to the free-
stresm d.irecticn,the vortices which were bound in the wing &El.turn and
trail backwards with the ssme distribution in strength4 as they had when

~is assumes, of course, that the vortices have not begun to roll up to
any significant extent.

—.—..— -—.—. ..—-. .. .
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.

crossing the last spanwise section of the wing
(see sketch (k)). Since the vertical induced
velocity along the last spanwise section was made
constant (by finding the appropriate solution to
the integral equation), it must also be constant -
and, in fact, the same constant - everywhere in
the vortex wake. Hence, if a flat surface having
the same dngle of attack as the wing is inserted
anywhere in the wake it will in no way disturb the
flow and consequently there will be no loading on
such a surface (just as there is no loading on the
vortex wake itself). The loading is zero, therefore,
on the tip regions marked 2 in sketch (k); the load-
ing in the regions marked 1 being given, of course,
by equation (44).

It is interesting to see how the distribution c
and magnitude of the loading given by this
(slender wing) theory compare with linearized ,
theory results at some Mach nuniberother than 1.
The differences causedby considering Mach numbers
other than 1 depend, of course, on whether or not
the new Mach number is subsonic or supersonic.
This discussion must be limited to a comparison
with supersonic Mach numbers only, since theo-
retical chordtise ,loaddistributions over swept-
back wings flying at high subsonic speeds are not
available. The change in the loading brought aboutby
increasing the speed can be divided into two parts:
one, a change caused by the rotation of the Mach
lines which-form the boundaries of the various [h]
regions in each of which the shape of the loading
curve takes widely different forms; and the other,
a change in the magnitude of the loading within
each of these regions.

Sketch (Z) indicates these effects. Thus, on the wing flying at
supersonic speeds the sharp drop in loading occurring at a critical Mach
line moves father back along the chord from point b to point a in
sections AA and BB sho~m in the sketch. This causes a considerably
higher value of the loading for the supersonic wing5 in regions 1 and 2.
A similar effect occurs on the body traveling at a supersonic speed where
now, however, the traces of the Mach lines are no longer straight but,

5Solutions showing the effect of crossing critical Mach lines on a ,
swept-back supersonic wing are given in references 6 and 7.

. . . . ..— ---— - --—-— — -- ———. ..——— —-— —-..— ..—- —
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.

due to the curvature of the body, form
helices. Region 3 in the supersonic case
would be a region of zero loading and region 4 ‘
would be a region of high loading relative
to the sonic value.

magmtude of Ap~qa within
bounded by the wing”edges
Mach lines changes as the
moves outbosrd along the
inboard sections ahead of

region 1 in the sketch (i.e., ahead of the
sonic Mach line from-the trailing edge root)
the loading on the sonic wing is higher than
that on the supersonic wing. It is well
lmown, Yor example, that in the case of a
triangular wing without body, slender-wing
theory gives a loading E times The loading
obtained at a supersonicMach number (where
E is the complete elliptic integral of the

second kind with modulus ~1-~~ andi.s given

closely by. 1 +
$s’2 (n+ -:) ‘or

sti values of mj3). On the other hand,
along sections farther outbosrd, the magni-
tude of Ap/qa on the sonic mng must become
lower than that on the supersonic wing. This
follows immediately from simple sweep theory,
since the component of velocity normal to the
leading edge is closer to the speed of sound
than zhat for the sonic wing. In fact, it is
easy to show that at distances tar enough
outbosrd so that simple sweep theory appliese
the supersonic wing has a loading

t -m’’’)-’”times that obtsined from

slender wing theory.

By an”applieation of the above consider-
ations, it is possible to obtain an estimate
of the absolute value of the loading on a
wing-body combination az supersonicMach

0

8Sketch (jl) indicates the reamer in which the loading approaches that
given by simple sweep theory as the reference station moves outboard.

.

. — —— .——— -—— - —..
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numbers. Another manner in which the results of slender wing theory can
be extended to Mach numbers other than 1 (or to pl~ forms which are not
sufficiently slender) is to form the ratio of the resulting values for
the wing plus body to those for the wing ai.oneand apply this ratio to
solutions for the sape wing or body at the required flight Mach numbers
(or slenderness factor). As has already been mentioned, the form@ion,
of such a ratio for the load distribution is not possible from the solu-
tions presented herein since the wing trailing ewes change to a certain
extent with the addition of the body. It is reasonable to eqect, how-
ever, that a ratio of the integrated loading characteristics (i.e., lift,
drag, and pitching moment) formedby dividing the result for awing-body
combination by those for a wing alone will be useful in estimating the
interference effects even if the wing trailing edges differ slightly.

Aerodynsnic Characteristics

The results developed in the preceding section can now be converted
into forms which represent the aerodynamic’characteristicsof the wing -
and hOdy. Hence, the foil.owbg will present the span loading, average
chord loading, lift, drag, pitching moment, and center of pressure for
the wing-body conibination.

Span loading.- The development of the
body will be considered separat~ly. First
can easily be determined from the value of
section. Thus

span loading on the wing amd
the span loading on the wing
AP given in a preceding

.

wingplm foti

and since A9 at the leading edge is zero

where (A9)T.E. is the value of ‘Ap on the trailing edge of the wing.

Sfice (AOToEe also represents the total circulation about the wing
chord, there results for the circulation ~ developed by the wing and

‘ the total wing lift ~

.. —.-... - —-. .-— .- .,.. .-— . — —.- - .—.. ---- - . - - -+ - .—-- -- ... .. .. ..——--- —-—
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rw = (A9T.E.

NACA TN 2554

Lw = pv~
f

rw * “ (51)

span

The equation for rw can now be
determined from equation (29).

~Y Between
Y
= r. and y= to (see

sketch (m ) the value of rw iS a
constant (this being the condition
by which the shape of the trailing
edge was determined). Between y= to
and y = so, P’ is given by the value
of A9 along the section AA since
there is no loading between this
section and the trailtng edge. Hence

A’

‘w=‘o~m[l-(a7, ‘“’ys’o

and

‘w=2v@(’-)[E@’JJ-~[’F(~,”J1y‘“sysso (52b)

where ~ and ~. are defined in the table of synibols.

Some ”caremust be taken in order’to find the span loading on the
body. Since we sre concerned here with the loading developed behind the
wing-leading-edge fuselage juncture, it is necesssryto subtract the
vslue of A% at this station, shown as station AA in sketch (n), from
A% at station BB also shown in sketch (n). For the total span loading,
then, it will be necesssry to add to this value the load accumulated
on the nose of the body. Denote by (rb)o the increment of circfiation .
developed by the nose of the body ~dby (b)l the in~em~t of circu-
lation developed behind the wing-lea--edge fuselage juncture, that
is, between stations AA and BB.7 Hence,

7Slender wing theory gives zero loading behind station BB as long’as
the trailing vortex pattern does not vary.

.

.—— ——. ——. —. ——— ——.————- .._.—
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(rb)l = (AT)T.E. - (AOL.E.

(Lb) , = poVo
f

(b)l w

(53)

The &lue of (A@ LoEc, see sketch (n),b
can be obtained from equation (47) by
setting tl and SI equal to rl.I
By transformation of”the result into,

I the physical plane, one obtains

(AQ?LOEO= 4Voa ~ro2-~

A

B

.

—

—.

m

The span loading on the body is then
\ given by

!

{

s02-roz
(‘b)1 =2voa —

[
Eo-E(ko#2)+ko

1
12F(k@2).~’2~ +

s~

where ~ and Y2 are given in the table of synibols.

.

.

(54)

.
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J.

r
hcorn

t

.
Wing on oninfinite cylinder

2,0-“

/.o--

Y

0 .4 .8 12 1.6
c7m

table 2.
and 0.316

Typical results
in sketch (p).

so
c7m

Sketch (o) shows the
variation of the span loading
over the wing and body for a

/body radius factor, r. mco:
equal to 0.316 and a wing

/semispan factor, so mco
equal to 1.7.

Section lift.- The wing-
section lift coefficient can
be calculated readilyby
dividing the section chord
into the value of the span
loading at the same span sta-
tion. Along sections not
infiuencedby the tip cut-off
this is especially simple
since the span loading is
constant. The value of the
section lift curve follows
kediately, therefore, from

are shown for a body radius factor equal to O

Zo I

Asymptote

6.0

cl

T@
/ /

/

~/mcO = .3/6
5.0 /

4.0
0 / 2 ylmco J

.

—. -—-— -—.— —.— ..—
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Section drag.- The value of the section drag can be written

Cd = “CZ + (cd)s (55)

where (Cd)s represents the suction force at the section leading edge.
The magnitude of (cd)s can be evaluated (see, e.g., reference 8) by the
equation

(56)

where dF/dy is the suction force in the free-stream direction per unit
length normal to the free stream, and c is the local chord.

Define a new set of coordinates, as sho~m in sketch (q), such that
yn lies along and Xn lies perpendicular to the leading edge of one
wing panel. Then’if

G= lti ~n ‘“(~’yn) GXn~O

( 57)

the suction-force component F (positive
in the positive Xn direction) in the
free-stream direction is givenby the
equation

im
aqG2(x,y)—=- —

W 1%

Nowby differentiating equation
by 2 (to convert Au into u),

(58)

(29) with respect to x and dividing
there results

sa(y2-ro2)

yt(s2-ro2)

---- _ _ ..-—.- ...— .— —.-—— —. .- —--— =--- ..- .————
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and similarity v becomes

v=
- ‘o”- (:)=

NACA ~2554

Since the normal component un is given by the equation

‘n‘s
there results

Un

‘By

~n

‘ “J%’c=) W’Y’J-%‘(’’”O)l+*m
[

m2(s2+ro2)(~-ro2) s(y2+ro2)
+

82 2 1
Y y/mco >1

-r. Y

means of e@ation (57), G can now be calculated. Hence, since

= l/J3 ,

G=
a(~+ro2)

J

, (F-t2)(fi’-ro4j
@(l+m2) 1’4 ~My ’-r04)

Fin~’y, therefore, the suction force can be written

d’ a2(y2+ro?
a-q

[

(Y2-t~(J%2-ro4)—=. J ( 59)
w y%2 . My2-r02)

and, by using
be written

equations (55) and (~), the section drag coefficient can

o

.

——___ . .—.. _— . _ _ ___ _ — ___
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.

,.

cd (22 W.%J[’+W7 [:-U] [’-W(%YI ,,mco>l—=— .—
aam (c/c*) ~ r. 2 “

)

()
-—

Y

(60a)

In the region where the lewMng-edge suction force cannot be affected by
the trailing-edge shape, equation (6o) reduces to the simpler form

cd c1 fi(y/mco)_-
a% am (c/co) [’-f;Yl’ro/mco~y/mco~’ ‘6m) -.

!lhevariatdon of the section drag coeffici~t is shown in sketch (r)
for two wings: one without a body, and the other with a body radius
factor equai

-.
to 0.316.

6 .

9 ‘\
ZP

4 ., 1

\

\
‘\

b

-- ____

.
.
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Total kift.- The lift on the wing, the body, and the combination
can now be evaluated by means of equations

[ [
~1) and 53) stice the

expressions for I’ are given by equations 52) and M). The integra-
tion required is somewhat involved algebraically,but the final result
can again be expressed in terms of elliptic inte~als. Thus, defining

Ao(k>V) by

r

&(k,v) = ~
1
KE’(kj$) + EF’(kj$) - m’ (k,*)

m 1 (61)

(tabular values for & can be found in reference 9), the total lift
carried by the wing is

r T

L-w p So’-ro’

{

to2+ro2 rE2-~’2i2] -kro ~Eo-ko’2 -
~= so to

G] }

L

(62)’

Equation (62) agrees with the results presented in references 3 and 4
when to = r. (the case of a triangular whg on a body) and r. = O
(the case of no body), respectively. When so equal-s to, tkt is,
when there is no wing, ~ equals O.

The lift on the body will be computed in two parts just as was the
span loading on the w5ng: the lift on the portion of the body behind the
T@-leading-edge fuselage juncture (Lb)1, and the lift on the nose Of
the body (Lb).. It is a well-brown result of Munk’s airship theory that ●

the lift on the pointed nose is just

(Lb). 2m02

—=

qa

and is independent of the shape of the nose.8 The value of the lift in
the vicinity of the wing follows from the integration of equation (x)
according to equation (53). The total lift on the body can then be
Written

8 ~ t~a repo~, it iS as~ed that the nose is d-WaYs ahead of the ->

that is, the portion of the body on which the wing is mounted is every-
where a ckrcular cylinder.

———— -----— —
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~ (L-b).+(%)= ..’2
—= = 2
qa qa

~“’ [4.0 (Eo-~t2~)-i- (~2-k,2K,)]+

‘[(-Y-(-Y 1 ‘o(k,,*.) - 2%2 (64)

Setting to = ro, one finds the.result given in reference 3 for a trian-
. gulsr ~g mounted on the cylindrical portion of a potited body.

If to = .0 = so, the wing disappears and equation (64) reducess to
equation (63). If .0 = (),~ reduces to zero.

Finally, the sum of equations (62) and (~) gives for the total
lift of the wing-bcdy combination, including the nose of the body,

L

(
.=2fi_.

)

to4+ro4 + , z

qa -%.2 o
so

Sketches (s) and (t) show
the total lift on various wing-
body combinations together with
its division into the component
parts carried separatelybythe
~~ and body. Various lift
coefficients, depending on the
choice of the reference area,
can be formulated by means of
the area-span relationship
given in figure 1.

Total dr~ .- In general,
the vortex drag canbe calcu-
lated by finding the momentum
transport through a plane perpen-
dicular to the x axis and
located infinitely far behind
the airplane. In slender wing
theory the calculation of the
total.drag is simplified in two

/.6

/.2

L
4=

.8

.4

0 I
0 .2 .4 .6 .@ /.o

(s) ~/se

‘Note that Ao(k,l) = 1.

------ -. -----— ---. ——- —— . . —.—.—————-------. ——.—_ _____ —— —. —
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L

I
.

to/s; .8

Wing

Body

NACA TN 2554
.,

ways: first, the vortex drag becomes the
totsl drag (neglecting,of course, vis-
cosity), and second, in the calculation of
this drag the reference plane can be located
immediately behind the airplane since the
flow there is the same as it is infinitely
fa back.

Hence, a mamntum balance gives’for
the drag

(66a)

where w is the value of the vertical
induced ve16city behind the wing in the
z = O plane. It is more convenient to
perform this integration in the ~1 plane.
Equation (66a) can be put in the form

where w and A% are given in the fol.lowing.

For rl=~ y12~ t12, that is, between the
it is seen from equations (39b) and (31) that

[

Yl”~12-r12
w=- v& 1- 2Y~

rl=

(66b)

body and the trailing edge,

— — .—— . . ___ ..———._ —-
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For t12~y12~’s12, that is, on the wing, it is seen from equations (39a)
~d (29) that

v= -v&

[ 1

(6773)

AITl= 2V& /- E(kl,Yl) - kl~aF(kl,$l)
1

Finally, for y12~r 12, that is, On the body, equatio~ (38a) ~d (47)
give

w=

API =

-V(-JU

[
2VOCL~- E1-E(kljl@ + k1Y2F(k1,Va) -

I
(67c)

,,%1] -+~oa J’-- J
me substitution of e&ations (67a), (6~), ~d (67c) ~to

equation (66b) ytelds after integration

DL
4(s~2-rla)(E1-kl‘2KI)(E1’-k12K1’)—a— - (68)

ga2 2qa

where L/qa is given in equation (6>). IR the ~ @ane equation (68)
. cm be written h

D

4&so2 =

which for r~ = O

the dimm-sionless form

&=- (-s (Eo-~l 2@ (Eot-l#~t ) (69)

agrees with the results of reference’4. Equation (69)
also checks ~th the–result obtained for the drag by the method, pre-
sented in the precedin& section on section drag, based on the calculation
of the suction force along the wing leading edge.

,

.

,

. . . ------ ----- .—-. .- ..-. ---- .—-- ----- -------- -----_ ——.. . . . . .. . --- . . . . . . .-—.
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.8

.6

.4 ‘

0

Sketch (u) shows
total drag on various
body combinations.

the
wing-

.

Chord loading.- In
order to find the center of
pressure and pitching moment,

‘ it is convenient to find
first the chord loading,
which we will define as the
value of ~(Ap/qcc)dy where
the integration is carried
over the wing and body. The
chord loading can also be
obtained by evaluating the
expression d(L/qm)/~
since the latter term is
equal to ~(AP/qg)@. AS
a check, both methods were
used to derive the following
expressions.

For the part of the
chord loading contributed
by the wing it can be shown

o .2 .4 .6 .8 10
that

4( so4-ro4)

(
ITJ lT-

)
arc sin -%2 , ro/m<x< co

s -.
so so2+ro2

(70a)

—. —— —. .—— — .-- —————---
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.

.

For the pert contributed by the body behind the leading-edge fuselage
juncture it can be shown that

r.

J()
‘2

Ap d (Lb) 4(so4-ro.) ~ ~= s.ti 2B~o
‘&dY=~*=——————

so= /
b

—-, r. mSx ScO
so2+ro2

o

‘o

“J(1
2 AZ d (Lb)l

~a w= ~-=
4(so4-ro4)

mS03
o

The total chord loading can be obtained by combining equations (70)
and (71). There results the expressions

for ro/m<x~ co

& p-)=km ($&.)
and for co~ x

iii(k)=’m(--)t-?)

(7=)

(72b)

.

. . . . . .. ..— .— _ .. ..._ -—-. ________ _____
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Sketch (v) shows the variation of the chord loading with x
for ro/mco eqti to 0.316.

/.2

.8

-x ‘Y

I m=l

/

\ ---- - ----
o

Center of pressure.- The results of the last section canbe used to
determine the center or pressue %.p.o me ~~ue of xc.p. ‘s given
by the equation

/so m

J

x“aLti

/&r. m
x +-C.p. (73)

L

which excludes the loading on the nose. Bymeams of eqyation (73)

sketch (w) was constructed.

.

.—— -. .—
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/.2

.8

‘C.p.

.4

0

1

0 .4 .8 /.2 /.6

(w) t

.

.

II - ADDITION OF A HORIZONTAL TA132

It is possible to use the calculations given in the first part of
this report to find the forces and moments induced on a horizontal tail
by the presence of the wing and body. The same assumptions that were
used for the solution of the load distribution over the wing and body
will be made here. Hence$ the results will be principally valid for air-
planes having highly swept wings and tails or flying at Mach numbers
approaching 1.

Ih addition to the basic assumptions by which slender.wing theory
is defined, however, some additional.assumptions must be made concerning
the behavior of’the vortex sheet trailing behind the wing and passing by
the tail. Actually these trailing vortices provide the only means by
which the wings can signal their presence to the tail, smd except for
them the slender wing theory analysis of the tail effectivenesswouldbe
identical to that described in part I for the wing. Only two types of
trailing vortex patterns will be investigated. One composed of a flat
vortex sheet situated entirely in the z = O plane (the plane of the
wing), and the other composed of two completely rolled up point vortices

. . ..—-. . ..——... —-——.-——--—.- —————.——. ————— —-—--—. .---——– —
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situated symmetricallywith respect to the y = O 21ane, located a
distance h above the z = O plane and a distice a from plane of
qmmetry. These patterns represent the two etiremes of the actual phys-
ical behavior of a trailing vortex wake. It is to be expected that the
sheet is more representative of the true wake when the tail is located
only a short distance behind the wing. On the other hand, the two point
vortices should be valid for tails located a large distance behind the
wing. An indication of the magnitude of the distances at which the @o
assumptions are accurate can be obtained in reference 10.

Method of Solution and Boundary Conditions

The partial differential equation th& governs the flow in the
ticinity of the tail is, of course, identical to the one studied in the
first part of this report, namely, Laplace~s equation applied to a ‘yz
plane (equation (2)). In fact, the general discussion of boundsry con-
ditions and forms of solution given in part I stiIl applies here. Hence,
the Joukowski transformation can again be used, the ~ plane having the
same relation to “the ~= plane as before and the inte~al relationship
given as equation (15) still applying. ~

The only mathematical difference between the study of the wing and
tail canbe seen at once in the application of equation (15). In the
case of a flat wing, the vertical tiduced velocity w in equation (15)
was known to be a constant over the region occupiedby the wing plan
form. In the case of a flat horizontal tail, OQ the other hand, the
value of w over the region occupied by the tail plan form is composed
of two pas: one, the constant value fixed by the inclination of the
surface to the free stream, and the other, a distribution that is just
equal and opposite to the vertical velocity induced over the region by
the v~rtices trailing from the wing. Effectively, therefore, the analY-
sis of a horizontal tail is “thesame as that for a wing with a given
variation of twist and camiber.

The additional notation necess~ for the description of the
pertinent tail parameters is shown in sketch (x). The distance from
the x axis to the tail leafig edge is representedby a, and the
slope of the tail leading edge is designatedby P. M Us reportz
only triangular tail shapes wi12 be consid=ed; however, more complicated
shapes could be analyzed by the method presented.

,.

— —— -. - —. - —._ .—— .
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/7
Y

xy=s=mx*
Y

Solution for Trailing Vortex Sheet

Since the vortex sheet from the wing is assumed to lie entirely in
the zl = O plane, and since the outer extremities of this sheet are
at *Sl (see sketch (y)), the study of this case can commence with the
@version of the integr~ equation” of part 1.

(74)

For ‘t~2< y12<s ~2, the value of Avl(yz) is given by equation (25a) and
for a~z< ylz<t 12,

Avl(y2) = O (75)

.

I

t

.—. - .__. - . . .. . — ..
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‘ iz Physical plane

Wing vortex woke

/
+ j ,~y

s

I
izl Transformed plane

Wing vortex woke 7

p+J-T
(Y) “

Substitute these two values of AV1 h-to eqwtion (74) and apply the
boundary condition that W1 quals -v& ~ the fiterv~ o< Y12 < U120
Then, assuming tl=>al=, that is, the vortex sheet from the *g does
not cross the taillo (the condition shown in sketch (y)), there is
obtained, after inversion (see appendix B) and some manipulation, the
value of Avl on the tail. Thus

for 0<y12<u12 and for t12>012

2Voay=
Avl(yl) = -“— .

m

This solution for AV1
characteristics of the
back from the wing.

d-!:- I= ‘7’)
1

can now be used to determine the aerodynamic
tail in the presence of the vortex sheet trailing

l~s assumption applies to all subsequent analysis of the tail aud
vortex sheet conibinations.

._— .——.— -- -——— —. ——.-— —— —.—
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Span loading.-
the tail surface is

where Av is given

The spanwise variation of circulation generated by
giveriby the expression

(77)

‘-L
in the ~= plane by equation (76). On the portion

of the El plane that is covered by
for r12<y12<u12) this yields

the tail surface-(i.e., -

S21

(78)

To determine &e spa loading on the body it is necessary to @tract
the value of A91t at the tail-leading-edge fuselage Juncture. This
value is obtained from equation (78) by placing al = r=. The span load-
ing on the body (i.e., for OCylz<rla) is then given by the formula

Equations (78) and (79) have been transformed to the &j plane and the
results are shown in figure 2(a). In this tid in all following numeri-
cal examples the wing will be fixed as the special type studied in
part I having the measures so/mco = 1.7, to/mco = 1.091 and
ro/mco = 0.316.

_ ..—._. _— —_- —c— _____ .. ...



r

46 I?ACATN 2554

over
~ordtise load distribution on the tail..- The distribution of load
the tail surface can be calculated from the eqpation

(80)

where the value of ~%.~.,
by the expression

Lb, L-
determined

al2.

P

from equation (78), is given

(vt,2) dq

. .

(81)

By means of the substitutions

(a=~r=~(s12-t=2) , ~n2u= (s12-~12)(T-t12)
k42 =

(s~2-a=2)(t12-r12) (S=z-tlz)(p==q

equation (81) can be reduced to

h~=t 2vo~#o(k&)
—=.
aul x J-

where

rt12-r12
+~= 72

‘1 -rl

Hence, the loading on the tail can be written

()

Ap ~=Ao(k5,V9)
—=

‘at e

and since

in the closed form

ml

dx,

(82)

(83)

.—.— ..— — -—. ——— -.
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the final expression obtained by transfo- equation (85) to the
g plane is

(86)

where k4 and ~~ are the transformed values of k~ and ~~ and me
given in the table of symbols.

Total lift on the tail.- The total lift on the tail can be evaluated
by use of the equation

(87)

The value of API is given by the equations (78) and (79). Substitute
these expressions into equation (88) and, after integration, there
results

P’‘(t-)d ‘8’)

In the 5 plane this canbe written

Lt

[

(uoz-ro=)2(80=-toz)(so2t02-ro4)_ ~2
—=. 1-t

1
Ao(k4>@ +

2qx S02*02 o

.

2(to2-ro2)

( )
(so2-aoa)(so~02-roA) E4 - ‘~ K4 (90)

toso b

Aplot of this equation is shown in figue 3(a) for ro/mco = 0.316.

. .. . ... .———... ___ _ .—— —— —.- ...— .—— .——
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.

Drag. - The drag of the tail can be calculated from the egyation

Dt=~+Ft (91).

where ~ is given by equation (go) and Ft is the suction force at
the leading edge. In a manner similar to that given in the first part
of this report under the subheading “Section @g,” this force is
obtained from the equation

As before

Wn(xntYn)
G=l~~—

Vo &
Xn+ O

(92)

(93)

the values of Un and ~ being, respectively, the normal velocity to
smd the normal tistance from the leading edge. Substituting these values
into equation (93) gives

and the expression for the suction

. a

Ft=- Vo2a2p3c
1
ro

()y4-ro4
.

F
Ao2(k4&) (94)

force can be written

()y4-ro4T
~2(k4,*.) @ (95)

.

Hence, the total drag becomes

(96)~ ‘~ - ~ j’”~-) Ao2(k4,$,W
aq aq

r.

This equation is plotted in figure 4(a) for ro/mco . 0.316.

Chord 10ading.- A closed formula for the loading can be obtained by
carr@ng out the integration ~ (Ap/qa)tdy over the tail or by evaluating
d(~/qa)/clx. However, since the term &( k4,~~) in the expression
for Ap/qa does not involve y, it is easier to evaluate ~(@/qa)tdy.
Thus, using equation (85), the chord loading in the 61 plane is given by

i.

.— — -.——- .————...—-. -—. ...—. —------
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In the g plane this becomes

(97a)

(97b)

(This checks with the result found by differentiating ~/qa with
respect to x).

Center of pressure.- The center of pressure can be calculatedly
means of the formula

J

uo/u
~gti

rolP ax
xc.p. = (98)

h

where m/dx is the result just obtained in the previous section
~d ~ is given by equation (~). phc@ these ~ues fito

equation (98) yields

xC.p. =9j””~&j$&(k4,y~ti’ (~~)

r.

A graph of this result is shown in figure 5(a) for ro/mcQ= 0.Q6.

, Solution for Rolled Up Vortices

As was.pointed out in the preceding section where the method of
solution was discussed, the mamner in which the present problem will be
attacked is as folldws: First, the velocities induced at the surface of
the wing and bodyby two point vortices looated somewhere in space will
be calculate% second, a solution wi.11be ~ormulated (by methods identi-
cal to those used in part I of this report) that wi12 just cancel the
vortex induced velocity component normal to the surface of the wing or
body; third, an additional solution will be formulated that will fit the
boundary condtbions prescribed for the tail surface (in this report only
a flat-plate tail surface will be considered).

. . . ... .. . .-. ——— ___________ ______ ..-.__,___ _____ ._ ——. —..— ..._.
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As usual, it is simpler to work with ‘thetransformed ~1 plane
than with the physical ~ plane. Hence, again the Joukowski transfor-
mation will.be applied to the field equation and boundary conditions at
the outset of the problem. See sketch (z).

The velocity potential

,i jZ Physical plane at a point (YI,ZI) in the
~1 plane induced by a pair of
point vortices located at

‘“’fex ‘“c::? ~v;:;; a:’eq$t;:’ ‘s

h Y

“ -i

t
J

rw al (zl-hl)dy=
%& =—

~ -al (Y1-Ye)2+(zl-hl)2

[z)

+“+ - (loo)

,iz, Transformed plane where I’w is the strength of
the cticulation csrried by the

‘Urtex ‘“C’7 ~ P=e18and trailing back
from the wing tips. The value
of rw/Vo_o that corresponds

h, ~ to the SweptAack wings studied

44

t
/ in psrt I of this report is

“q given by equation (32a), thus

—5
— 0’ &=2~-(:~]

The values of al and hl depend, of course, on the span of the wing.
b order to compare the following results for the rolled up vortices with
those obtained for the sheet vortices in the preceding section, the
numerical results presented in the succeeding examples wilJ.be for

/so mco = 1.7, to/mco /= 1.091, and r. me. = 0.316. ~s pmticular
choice of parameters fixes the span-loading curve for the wing to be that
shown in sketch (o). A reasonable choice for the value of a can be
calculated by replacing the figure in sketch (o) bounded by the lines
y=ro, I’= o ma the curve for r/Vo~Co by a rectamgle with the same
height and area. The value of a is then given by the sum of the base
length of this -rectangleand the quantity ro/mco. ~is procedure was
carried out and the result a/mco = 1.545 was obtained. In order to
obtain a more complete picture of the effect of the point vortices on
the aerodynamic characteristics of the wing, four different locations
were chosen for the positions ~f the vortices, two in the z=O plane
for values of a/mco equal to 1.745 and 1.3, and two at a height
h/mco = 0.3 above the z = O plane for the same two values of a/mco.

.

____ ——— ——— —.—
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From eqmt~ on (100) itccan easily be shown that the value of the
vertical induced velocity in the 21 = O plane is

()aqv . r~~
[

yl -al Yl+al
wv=—

~zl 2==0 1
(101) ,

%t h12+(yl-al)2 h12+(yl+al)2

The particular inversion of eqgation (15) that
conditions (see appendfx B) can be written

fits the present boundary

(102)

Place the value of Wv givenby equation (101) into equation (102) amd
add the condition that the tail be a flat-plate lifting surface at an
angle of attack u, and there results

J- J-+.
Y1-bl yl-bl

.)

(103)

where

bl=al+ihl

:1 = al ~ ihl (104)

and where the radicals are defined uniquely if the complex plane is cut

along the real axis between -m and U=. (For example, G Cw
be set eqml to pleiql where T1 must Me be~een .X ~d ~.)
Although the above expression for Av can be ~ut in real terms by
applying the transformations

it is easier in deriving subsequent quantities from Avl to use
eqyation (103) first and to make the transformation afterwards.

1

. . . .- ... ._-. ___ ._._ . ___ - ——. .— -.—____ ._ ._ . _



s-pan loading. - The span lomlQ can be determined frcm tiherelation

where Av Is given by equation (103). There fW remiLt6

(lo7a)

(105)

I

~[r12( sinh272-cos2~) +y12] 2+4r12(r12-y12)81&72co~2 -112(B&72 -cos~) -y12 E
2< r12 *

t Yl

al Jr12-y12 d-oh 72 COB U2 - 4
(Mm) R

I Y

.
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The terms sinh 71, SW 72, sin w ~ and sin U2 are all defined in the
table of symbols. $Equations (107a and (107b) can, of course, be trans-
formed to the physical plane by transforming each symbol therein from
the El syst& to the ‘~ system. ‘

—

The variation of the tail span loading, as given
and (10~), is shown in figures 2(a) and 2(b) for the
positions discussed.

fChordWise load distribution.- The loading on the
calculated from the relation

The value

Hence,

of w91t/aU1t follows from equations

dx

by ecyuations(107a)
various vortex

tail can be

(108)

(107); thus ‘

‘~--) ] (109)

,

[
AP
—

Equation (110) when transformed to the ~ plane gives the surface load
distribution over the tail due to the presence of the two point vortices
as well as the inclination of the tail to the free stream.

Total lift.- The total.lift can be obtained by integrating the span
loading. Thus, if ~ represents the lift oh the tail,

(U-1)

Carrying out this integration yields

Lt
.—= fi(al=-rla) - 2W (rl sinh 72 cos 61a-(Y=Sillh71cos Ul)
2qa Voa

(1.12)
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This result was transformed and plotted in figures 3(a) and 3(b) for the
values discussed.

Total drag.-

where Ft is the
steps (see, e.g.,
evaluation of the

a2

2J 1+V2

The final result,

The total drag is given by the relation
.

Dt=aLt+Ft (U3)

suction force on the tail leading edge. As in previous
eqution (92)) the calculation of Ft depends on the
function G. ti this case G2 is

ti the ?1 pleme, for the total drag canbe written

Dt

()

rw” 2zn
3r(a12-r12)+ A—=

qa2 % v~

(al=-hlz-a=~)2+kl~ l=+(alz-hl=-alz)~(al=-h=z -’wl=)2+hal=hl= ~115)

(alz-hlz-rl=)2&l=hla+( al=-hl=-rl=)~(~z-hl=-rla )2+hal=hl=

Aplot of the drag is given in figures k(a) and k(b).

Chord loading.- As before, in the development of eqwtions (97a)
and (97%} for example, the chord loading can be calculated either by
performing the integration .f(Ap/ )t dy, or by differentiatingwith

Trespect to x the total lift (Lt qa). These two different approaches
serve to check each other and both lead to the ssme result, namely,

2f”G)t = [’ - V;::d:;::::.l) 1 ‘“’)
dy = ‘l’cul~

o

Center of pressure.- Results for the center of pressure XC.p.
(where xc.p. = -Mt/Lt) are shown in figures 5(a) and 5(b).

—. . . — .—.
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COI?CLUDINGREMARKS

When an airplane is slender enough11 (in the longitudinal sense) or
is flying close enough to the speed of sound, the mathematical descrip-

.

tion of its attendant flow field is greatly sin@ified - so much so, in
fact, that the analysis of whole wing-body-tail conibinationsis feasible.
This simplification comes from the fact that the induced velocities in
each lateral plane are completely independent of the nature of we air-
plane or flow field behind the reference .plme andare affectedly
disturbances ahead only through the presence of free vortices trailing
do~mstresm from the lifting elements. In the case of a tail, these free
vortices stream back from the wing trailing edge.

b thi~ report, speci~ wing plan fbrms were studied: special in
that they produced flat span-loading curves between the wing tips and
fuselage. For such wings, the free trailing vortices were concentrated
entirely in the region directly behind the wing tips. In general, the
trailing vorticity would be concentrated predominately in this region.
The behavior of this trailing vortex system is boundedby the behatior
of two exbreme models: a vortex sheet lying everywhere in the plane of
the tail, and two laterally symmetric point vortices lytng in or above
the plane of the tail. Each of these models was e~ned.

One point vortex was placed in the plane of the tail’at a distance
from the fuselage in the spanwise direction determined by replacing the
wing-span loading curve by a rectangle of the same height. As shownby
figures 2 through 5, the results for this point vortex were not signifi-
cantly different from those for the vortex sheet. k either case, the
presence of the trailing wing vortices reducedby about M percent the
effectiveness of the triangular tail surface in producing lift for the
range of tail spans and body diameters considered. For the same condi-
tions the tail drag was reduced only 18 percent.

For the particular locations chosen for the point vortices, it was
found that both the lift and drag decreased as the vortices moved closer
to the tail. On a percentage basis the decrease was roughly the same.

.,

llThe assumptiotisunderlying slender wing theory are obviously violated
slong lines such as theleading edge, x = mco, and the Mach wave from
the trailing-edge-fuselagejuncture, x = CO. Along these lines tie
pressure gradient is discontinuous and (M&-l] m is not bounded.
SWlar situations appear repeatedly in the linearized analysis’of
aerodynamic flotiphenomena and in each case agreement with e~eri-
mental results camnok be anticipated.

. . . ..— .. — ..—— .- .—— .—. -
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.

The position of the center of pressure on the triangular tail was
insensitive to the presence of the wing vortex system regardless of the
vortex pattern chosen. In the extreme case, when the point vortices were
nearest the tail, the location of the tail center of pressure with refer-
ence to the tail apex as 5 percent forward of the position obtained when
the wing was absent.

Ames Aeronautical Laboratory
~ational Advisory Committee for Aeronautics

Moffett Field, Calif., Aug. 20$ 1951

.

————— — —— — — --
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a

bl

&

c

co

Cd

cl

d

D

E.

E(k,~)

F

F(k,v)

k

k?

APPENDIX A

LIST’OF ~ORTAIiT SYMBOLS

horizontal distance from y=O plane to
(See sketch (z).)

al + ihl

vortex

.

al - ihl

local chord

characteristic chord
(See sketch (a).)

()dsection drag coefficient
~

()zsection lift coefficient
F

section drag force

drag force J

complete elliptic integral of the second kind (~~~d.)

incomplete elliptic integral of the second kind ~-d;

suction force at leading edge of lifting surface
.

incomplete elliptic integral of the first kind

(’L*(M&l-t’) )
vertical distance from 2=0 plane to vortex

(See sketch (z).)

complete elliptic integral of the first kind

(Jo‘Ji+k5)
modulus of elliptic integrals

. . —..-. .- ..—. .——,,..,.. ____ ___ .__________ — --—. --- ——— — ——-–-
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%

kl

k=

k=

k~

k~

2

L

m

M

%

P

AP
Y

~

r.

s

80

s

t

to

J(s%2-r04)(s2-t2)

t(s2-ro2)

~ in the El plane

2J(S%%04)(S%2)

(s2-ro2)(t2+ro2)

(g)

(a2-ro2)./(s2-t=)(s%~ro4)

(t2-ro2)J (s2-a2)(s2a2-ro4)

section l~t force

lift force

slope of wing leading edge
(See sketch (a).)

pitching moment, positive when tail is forced

free-stream Mach number

local static pressure

()P1 -Pllloading coefficient —

q G’ovo’)
free-stream dynsmic pressure

radius of boctv
(See sketch”

distance from
(See sketch

ms2dmm value
(See sketc@

wing sxea

distance from
(See sketch

maximum value
(See sketch

.. — ——

(a). )

x ads to wing leading edge
(a).)

of s
(a).)

x axis to wing trailing edge
(a).)

of t
(a).)

— .—. . . . - .——.

NACA TN 255h
.

down

)

.



NACA TN 25X “ 59

U,v,w

Au,Av,Aw

Vr

v~

x,y,z

xc.p.’

a

P

Sinh 7=

Sinh 72

r

v

e

%(k, ~)

P

E

P

Po

G

9

AQ

(Aq)T.E.

perturbation velocity coniponentsin the x,y,z directions,
respectively

jump @ velocities across 2=0 plane, ~-ul, Vu-vzy wu-wz~
respectively

radial comyonent of perturbation velocity in a y,z plane

free-stream velocity

Cartesian coordinates

distance to center of pressure
(See sketch (w) and fig. 5.)

angle of attack of airplane

lhll

rlsin~ ,

[1
total circulation about wing section (AQ)TOE=

Y2

polar angle in y,z plane

: [m(k’,V) + (E-K)F(k’, $j] .

slope of tail leadihg edge
(See sketch (x).)

complex variable (y+iz)

polar distance in y,z plane (JZ2)

free-stream density

distance from x axis to lea&ing edge of tail
(See sketch (x).)

perturbation velocity potential

jump in Q across 2=0 tilane

value of A9 at trailing edge

-.-.—— —..-—

(%-%)

------ ... ....-.-.—- —-——-–—-———..— -—-.-
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‘+-=

$7

lffJ

99

siIi2 (q

sin2 w=

1“

12

(13

J(t2+ro2)2 - 4y%2

s(t2+ro2)

t(,92+ro2)

82 2-r.
2

s2+ro

s(%-ro2)

t(#-ro2)

plane

plane

plane

plane

(Y)

[ cn2-a12-h12+~(a12+h12-u12)2+ 4U1~12]
2012

[r12-a12-h12+~ (a12+h12-r12)2+ 4r12h12]

2rl’=

Subscripts

complex plane resulting from the application of the Joukowski
transformation to

boundary conditions

boundary conditions
.

the physical plane

givenby equations (12)

givenby equations (13)

. — — .. —— -— —— ..- ———..- ———
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a

II

1

n

t

u

v
.

TT

wake

body

lower surface of 2=0 plane

component normal to leading edge

tail

upper surface of 2=0 plane

rolled up yortex

wing

.

.

. ... . -—. — . .— . ...—--—— ___ .-. .—. .—. .
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The integral equation

EQUATION

can be inverted by applying operational techniques. Consider the
operator

(Bl)

.

(B2)

where h(q ~ is a function to be chosen later. Operating On both sides
of equation (Bl) yields

●

where the order of the integral and differential signs Ori‘theright-hand
side of the equation indicates that tie ~ integration is to be per-
formed first.

.

The next step Is to reverse the order of integration in the double
integral term in equation (B3). Since am inherent singularity exists in
the area of integration at the point VI = qz . A, however, some care
must be used in order to obtain this reversal. Designating by R(k) the
difference between the term taken first
then with another, thus

R(x) can be evaluated by isolating the
difference only in its vicinity.. Hence,

with one ord~r of ~tegration and

(nl-11.d(ml)

(B4)

studying the

,_ —...———.—..—— .—. —..-—— —— -—— —-— -— -.. --..-—--————- —
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(B5)

Using the transformations ql = A-exl and 72 = k-ex2, equation (B5)
can be reduced to the form

f
= 2Av(k)h(x)

l-xl1&L2n—
0 xl 1+X1

=-~Av(A)h(k) (1%)

Substitute equations (B6) and (B4) into equation (B3) and there
results

or

If

Av(x) =

h(~l) = ~(b-~l )(~l-a) equation (B7) becomes

N’.J&- $ abAv(q2)dq2

1

(B8)

Since, however, equation (38) contains both & an. its integral, it
does not represen{ a uni~e solution for A.. In order to obtati”a
unique solution, some additional.condition must be imposed. If this
condition is that A.(a) = O, then the proper choice of h(~) in equa-

. tion (B7) is

. ..— .. ...-. —--— .- .-. . — .-— ..— —--—- ——-— -— --- —--. .——— -- -.. - ——.—.—.-
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which leads immediately to the unique result

.

(B9)

.

.

-——-- —.

(
,’
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ro/mco=

x/co
1.00
1.05
1.10
1.15

1.20
1.30
1.40
1.50

1.60
1.80
2.00
2.20

2.60
3.00
3.50
4.00

0

y/mco

o
.168
.256
.332

.400

.526

.644

.756

.867
1.083
1.297
1.507

1.91
2.32
2.83
3.33

NACA TN 259
.

TABLE I.- POSITIOI?OF TRAILING EOGE

).100 0.224

~~mcoy/mco

).100 0.224
.213 .323
.290 .387
.361 .447

.425 -.504

.545 .614

.661 .7ZL
●773 .826

.884 .931
L.096 1.140

L.308 1.394
L.516 1.555

L.92 1.96
?.33 2.37
?.84 2.87
3.34 3.38

J.316 0.447 0.500

yim~o yimco yimco

2.31-60.447 0.500
● 413 .542 .593
X& .598 .649

.648 .699

.57’9 .698 .748

.682 .797 .845

.786 .896 .941

.888 .993 1.036

.990 1.090 1.130
L.192 1.283 1.323
L.393 1.482 1.522
L.596 1.676 1.723

?.00 2.07 2.12
2.40 2.47 2.52
2.91 2.98 3.02

3“41- 3.49 3.52

0.600

y/mco

0.600
.690
.746
.796

.845

.941
1.033
1.I_28

1.222
1.413
1.610
1.803

2.20
2.60
3.10
3.60

I
y/mco y/mco

0.700 0.800
.791 .883
.844 .933
.890 .982

.933 1.031
1.028 1.126
1.123 1.221
1.217 1.315

1.312 1.412
1.504 1.606
1.700 1.800
1.893 1.996

2.29 2.39
2.69 2.79
3.19 3.29
3.69 3.78

0.900

y/mco

0.900
.970

1.020
1.067

1.113
1.213
I. 312
1.410

1.506
1.703
1.800
2.100

2.50
2.90
3.39
3.89

— —.-— ..— —,. .
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r/mco=

y/lllc~

o
.100
.227
.316
.447
.500
.600
.700
.8
●9

1.0

1.1

1.2
1.3
1.4
1.6
1.8
2.0
2.5
3.0
4.0

0

c/co

L.000
.926
.910
.826
.790
.777
.760
.748
.738
.728
.722
.719
.708
.703
.699
.692
.687
.682
.674
.669
.660

TABLE II.- VALLJESOF LOCAL CHORD

0.100

C[co
--b

0.900
.8u
.802
.772
.761
.746
●735
.724
.715
.709
.704
.697
.692
.688
.682
.677
.672
.663
.65(
.648

).224

:/co

---
---

). 776
.732
.703
.695
.685
.679
.673
.668
.665
.661
.659
.653
.651
.645
.642
.639
.631
.625
.613

J. 316

,/co

---
---

;. ;8~
.633
.627
.620
.617
.614
.612
.610
.608
.607
.606
.605
.603
.601
●599
.595
.593
.392

0.447 0.500

Cjco c/co

--- ---
--- ---
--- ---
--- ---

0.553 ---
.522 O.y)o
.504 .462
.498 .451
.500 .452
.503 .b59
.505 .464
,508 .468
.512 :::
.515
.518 .477
.522 .480
.524 .481
.525 .482

.522 .484

.519 .485

.514 .485

).600

:/co

---
---
---
---
---
---

).400
.362
● 355
● 3%
.365
.372

..376
.381
.385
.392
.396
.398
.403
.406
.410

---
---
---
---
---
---
---

). 300
.262
.260
.269
.278
.285
.290
.294
.299
.302
.305
.311
.315
.318

1.800

---
---
---
---
---
---
---
---

).200
.170
.170
.175
.180
.185
.189
.196
.200
.204
.212
.218
.225

) .900

:/co

---
---
---
---
---
---
---
---
---

)● 100
● 082
.079
.081
.087
.094
.o$13
.100
.100
.101
.102
.102

—-. ------ .—. -.————-- ---— __ . .. .
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0
#o / O*

(a) Gonstont f. /mce

Figure 1.- Re]otions between the wing area, wing spaq ond
body diometer.
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(b} Constant ~/s. .

Figure i.- Concluded. .
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[o) Vortex sheet.

Figure i?. - Voriotion of the span loading on the toll.
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.4

.3

L,

43

.2

.)

t

/
Vortex sheet — /

Rolled up
vortices

-------- (

[~=o I

o/mco = /. 545)

No wing —-—
/

G/me,, = .316
/

/

/

.2 4 .6 .8 10
O#m co

(a) Vortex sheet.

.3 I I I
Vortex positions

I I I /

.2

L,

4qd.#

./
~/mco= .316

I

.2 # .8 lo
~.?m~

lbj Point vortices.
Figure 3.- Voriotion of the lift on the toil.
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Vortex sheet —

— Rolled up .---..-
vortices

.2
(h=O /
o/mcO = 1.545) /

No wing
/

Dt
—-—

4qC&:

./

re/mcO = .3/6 //

n
.2 .4 .6 .8 10

~. /mee

(a) Vortex sheet.

.3

o
.2 .4 .6 .8 /.0

Figure 4.-

rO./m co

[b) Point vortices.

Variation of the drag on the toil.
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I I I I I I I I
Vortex sheet — ~Ance=.3/6

— Rolled up ------- “ .
vortices
(h=O

.6
No wing —-—

. Pxcp
~

4

.2
.2 4 .6 .8 10C*/nlc*

(a) Vof tex Sheet .
. .

/’ 1
r’ /mco” =. 316

/ 1~l!

“ w

II
. .

.0

II I Vortex positions I

.4 .6 .8
~O/mcO

[b) Point vortices.
&

Figure 5.-Variation of the center of pressure location
on the toil.
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